
UKIEPC 2015
Post-Contest Presentation
rgl@google.com

Some words

First, apologies for the judge lag in the first two hours.

UKIEPC has previously been hosted alongside the NCPC, a larger contest. Most
of the people working on this event had no experience with hosting any kind of
programming contest until a few months ago.

This was a painful lesson, but somewhat necessary to go through to ensure it
doesn’t happen again in the bigger contests we plan to hold in future.

Thanks to Rob Perkins and Jaap Eldering for rescuing the servers.

Some numbers

2012: 0 teams
2013: 52 teams; 5 sites
2014: 61 teams; 9 sites
2015: 142 teams; 12 sites

First correct submission: 00:18:32 – C, DoCThors (Imperial College London)
Last correct submission: 05:14:56 – G, Ariel (Trinity College Dublin)
Number of submissions: 959

742 lines of code to solve the whole set.

Some names

Organisers: Max Wilson, James Davenport, Christian Ledig

Writers: Sander Alewijnse, Jaap Eldering, Swen Gaudl, Jim Grimmett

Reviewers: Rowan Lee, Nicolas Prevot, James Stanley

SysAdmins: Jaap Eldering, Rob Perkins

Illustrator: Lisa Abose

Problem Solutions

A - Aqueducts
2 correct • solved at: 04:26 by

EE Dragons (University of Cambridge)

Author: Jim

Overview
● Given a graph which is:

○ weighted (by distances)
○ directed (downhill)
○ acyclic

● And has:
○ up to 40 source points, S
○ up to 40 sink points, T

● Find a way to pair up elements from S
and T so that:
○ every item from T has an item

from S.
○ there is a downhill route between

each S and T pair.
● Minimise the cost of this matching.

Aqueducts - Solution
Techniques

● Dijkstra’s algorithm
● Breadth-first search
● Minimum cost flow

Algorithm

● We are only interested in hills from S and T.
● Make a new graph of vertices from {S,T} where edge cost is their

distance in the original graph (according to Dijkstra's algorithm)
● This will be a bipartite graph.
● Look for a minimum-cost matching.

○ Hungarian algorithm (classical weighted matching method)
■ O(S3) on 40 vertices is very fast.
■ Overall complexity will be O(S3+S⋅N2⋅logN)

○ Minimum cost maximum flow
■ Can work directly on the original graph, as long as it’s

well-optimised.
■ O(S⋅N2⋅logN)

B - Biking
75 correct • solved at: 00:28 by

Boole’s Fools (University of Cambridge)

Author: Robin

Overview
● We have a series of up to 4 sections of a

hill, with various inclines and sloped
distances.

● Each section starts from where the last
left off.

● Given a formula for acceleration, find the
final speed of a bike if it starts at the top
of any of the segments.

Mountain Biking - Solution
Techniques

● Trigonometry
● Mechanics

Algorithm

● Say we start off at speed v0 and finish at speed vd (after D metres).
● Integrate the formula for acceleration:

○ vd = v0 + gt×cos(θ)
○ d = v0t + ½gt2×cos(θ) ... + C

● Solve for t:
○ ½gt2×cos(θ) + v0t - d = 0
○ t = (-v0±√(v0

2+2gd×cos(θ))) / (g×cos(θ))
○ Substitute back in, iterate over line segments

● Or:
○ Potential energy Ep = mgh
○ Kinetic energy Ek = ½mv2

■ v∞ = sqrt(2×g×h)

C - Conversation
58 correct • solved at: 00:18 by

DoCThors (Imperial College London)

Author: Jim

Overview
● Given a set of specifications like:

● key1 value1 value2 value3
● key2 value4 value5 value6

● Find the values that belong to every
single key.

● Among these values, sort them:
● By frequency descending.
● Break ties lexicographically.

Conversation Log - Solution
Techniques

● String chopping
● Hash maps
● Sort by key
● Schwartzian transform

Algorithm

● We need two pieces of information about each word:
○ Which users it was associated with (for filtering)
○ How many times it appeared (for sorting)

● Map each username to an integer
○ Every time we encounter a new word, initialise a structure:

struct Word {

 string text;

 int freq = 0;

 set<UserId> users;

 bool operator < (Word const &other) const {

 return freq != other.freq ? freq > other.freq :

 text < other.text;

 }

}

● Update each word on a line by adding the userId to its set
● Filter for users.count() == MAX_USER_ID, sort, and print!

D - Drilling
3 correct • solved at: 02:41 by

DoCThors (Imperial College London)

Author: Robin

Overview
● Given a 3D surface

○ As a set of polygon-shaped
contour lines

● Compute the point p
○ On the surface
○ With shortest distance to origin

Slant Drilling - Solution
Techniques

● Geometry
● Point-in-polygon

Algorithm

● It’s always best to drill either straight down, or from the lower edge
of a contour.

● Find the closest point to the origin on each contour segment, and
calculate sloped distance.
○ Iterate over every segment
○ Create a cost function C = (ax+(bx-ax) × i)2 + (ay+(by-ay) × i)2

■ Differentiate and solve for d(C)/d(i) = 0
● Find which contour contains the origin

○ Cast a ray in some arbitrary direction. If and only if the origin
is inside a contour the ray will cross that contour an odd
number of times.

○ Take the candidate contour with the smallest area.

E - Rainfall
1 correct • solved at: 04:40 by

EE Dragons (University of Cambridge)

Author: Jaap

Overview
● Balance two cost functions for the same

situation:
○ The rate of sweating, proportional

to speed2

○ The amount of rain across the
journey, a function of start time
and speed, decreasing as speed
increases

● Choose a start time and speed to
minimise the total cost.

Rainfall - Solution
Techniques

● Calculus
● Cumulative sums
● Ternary search
● Dynamic programming

Algorithm

● Algebra shows it’s always best to keep a constant speed
● Try every possible starting and ending minute

○ O(N) × O(N) = O(N2)
● If we are going to chop off some fractional time x to decrease rain

(at the expense of cycling faster), we’ll chop off part of the rainier
of the start and end minutes.
○ Reducing time by more than 1 falls within another [start, end]

pair so we can ignore that case.
● cost = sum(rain[S:T]) - x × rain[edge] + constant/(T-S-x)
● Differentiate cost and solve for dCost/dX = 0

○ 0 ≤ x ≤ 1
○ Don’t forget x = 0 and x=1

F - Physiognomy
0 correct

Author: Robin

Overview
● Given up to 12 weighted squares of

equal size,
● Make a loop around some subset of

them such that:
○ The loop is continuous.
○ The sum of weights inside the

loop is equal to the sum of
weights outside.

● Make this loop as short as possible.

Physiognomy - Solution
Techniques

● Topology
● Point-in-polygon
● Bitmasks
● Travelling salesman
● Dynamic programming

Algorithm

● Assume we already constructed the loop
● In this case, we can find whether a lamp is inside by the same

means as drilling: if and only if it’s inside, the number of loop
segments crossed in any direction will be odd.

● Let’s make that part of our state:
○ minimum_loop[start][pos][n1,n2,...,n7,n8]... nn possibilities?
○ We only need to know the parity, not the exact number.
○ minimum_loop[start][pos][2n]

● How many possibilities for start and pos?
○ A minimal loop always touches only corner vertices, of

which there are at most n × 4 = 48.
● Time complexity: O(n3 × 2n)

G - Drinking
18 correct • solved at: 01:53 by

Y U NO ACK (Imperial College London)

Author: Jim

Overview
● We have a collection of beers

○ Various costs
○ Various alcohol contents
○ Various sizes of glass

● We have targets:
○ Spend a certain amount of money
○ Drink a certain amount of alcohol

● We need to find a way of meeting these
targets exactly by choosing a list of
orders
○ Some can be chosen several times
○ Some can be ignored

Drink Responsibly - Solution
Techniques

● Fixed-point arithmetic
● Knapsack problem
● Depth-first search
● Memoisation

Algorithm

● Imagine a straightforward depth-first search:
○ def solve(i, units_left, money_left):

if units_left <= 0 or money_left <= 0 or i >= n:

return [] if (units_left | money_left) == 0 else None

sol_with = solve(i, units_left-units[i], money_left-price[i])

sol_without = solve(i+1, units_left, money_left)

if sol_with is not None:

return [beer] + sol_with

elsif sol_without is not None:

return sol_without

else:

return None

● Q: How many possible sets of parameters can this take?
○ A: O(N) × O(U) × O(M) = O(NUM)

● Memoise answers to overlapping subproblems:
○ if already_solved[i][units_left][money_left]:

return answer_for[i][units_left][money_left]

H - Sunlight
9 correct • solved at: 01:48 by

Beuler (University of Cambridge)

Author: Robin

Overview
● Given N columns in 2D
● Find the proportion of angles above

each column which aren’t occluded by
other columns

● For example:
○ 2 1 3
○ y[0], 2× the height of y[1], occludes

45° of the view
○ y[3], 3× the height of y[1], occludes

63.4° of the view
● N is quite large, so find a method more

efficient than brute-force.

Sunlight - Solution
Techniques

● Convex hull
● Andrew’s algorithm
● Trigonometry

Algorithm

● Some first-pass observations:
○ When computing the angle for a building i, we can safely

ignore all buildings not in the convex hull of buildings [0, i],
and not in the convex hull of buildings [i, n-1].

○ In fact, the building defining the angle on right side of i
comes directly after i in the convex hull of [i, n-1].

○ Similarly, the building defining the angle on the left side of i
comes directly before i in the convex hull of [0, i].

● Compute convex hull twice using Andrew’s algorithm
○ Maintain convex hulls on stack for [0, i] and for [i, n-1]
○ Left to right: Top of stack defines the left angle
○ Right to left: Top of stack defines the right angle

I - Nimionese
69 correct • solved at: 00:33 by

Exception: teamName not found.
(University of Warwick)

Author: Max

Overview
● We have a string made of words, each

composed of several syllables.
● Three rules to apply:

○ First letter must be “hard” ie.
member of a certain subset of
consonants.

○ For the subsequent syllables all
“hard” consonants must match the
first letter

○ Each word must end in “ah”, “oh”,
or “uh”.

Nimionese - Solution
Techniques

● Regular expressions
● String chopping

Algorithm

● Read in each word separately
● Use your language’s split() function to get an array of syllables
● Three regexes:

○ let hard = “bcdgknpt”

let soft = “aou”

syll[0].sub(“^[^$hard]”, [x] ⟶ closest(x, hard))

syll[1...$].sub(“[$hard]”, [x] ⟶ syll[0][0])

syll[$-1].sub(“[$hard]\$”, [x] ⟶ x + closest(x, soft) + ‘h’)

● For the security-minded:
○ [...] .sub(“^[^$hard]”,,) [...]

○ Please don’t do this in real life!

J - Jelly Raid
5 correct • solved at: 03:05 by

EE Dragons (University of Cambridge)

Author: Swen

Overview
● Given a 60x60 floor plan with walkable

and blocked cells,
● Locations of dormitory and kitchen,
● And paths of 200 patrolling masters

○ (where every path contains at
most 7 cells and masters follow it
back and forth indefinitely)

● Find the shortest path from the
dormitory to the kitchen so that you are
not seen by the patrolling masters
○ (where two people can see one

another if they are in the same row
or column and there are no
blocked cells between them).

Jelly Raid - Solution
Techniques

● Least common multiple
● Breadth first search
● Sneakiness

Algorithm

● Just running Dijkstra won’t work.
○ What if we get trapped somewhere?

● Plugging time in as part of state makes for a slow solution
○ 60 × 60 = 3600
○ O(N4)

● The patrol periods for {1, 2, 3, 4, 5, 6, 7} will be {1, 2, 4, 6, 8, 10, 12}
○ LCM = 120

● Let’s incorporate the current progress through the cycle into state
● min_dist[120][rows][cols]

○ O(C × N2)

K - Call a Cab
0 correct

Author: Sander

Overview
● Given:

○ N Points Of Interest
○ Restrictions on whether we can

travel from POI i to j by taxi t
■ Minimal distance
■ Maximal variation in angle

● Compute how to get from 0 to n in
minimal number of hops using any kind
of taxi.

Call a Cab - Solution
Techniques

● Two pointer algorithms
● Multisets
● Segment trees
● Dynamic programming

Algorithm

● For a given transportation type:
○ Farthest reachable POI is non-decreasing.
○ Nearest reachable POI is also non-decreasing.
○ Everything in between is accessible.

● Execute two pointer algorithm for nearest and farthest. Moving a
pointer takes O(1) and O(log(n)) time resp.

● Minimum distance: keep a running total of distance travelled.
● Maximum range: keep an auxiliary multiset of differences between

all angles travelled, in sorted order. The heading range is given by
360.000 minus the largest angular difference.

● Now we can run an efficient dynamic programming algorithm with
a segment tree (or sliding window)

L - Telescope
2 correct • solved at: 03:41 by

Me[N]tallica (University of Cambridge)

Author: Robin

Overview
● A grid of boolean values has had a mean

filter applied.
● This means that where previously a

value was cell[i][j]. it will become:
○ sum(cell[a][b]) ÷ n2 for a,b where

 max(abs(a-i), abs(b-j)) < ½ n

● We need to reverse this filter to count
the number of connected components.

Telescope - Solution
Techniques

● Cumulative sums
● Inclusion-exclusion
● Flood fill

Algorithm

● Multiply any blurred pixel by N2 to get the number of white pixels in
an NxN square around that pixel
○ 0xFFFF / (1002) ≈ 6.5 so no precision has been lost

● What if we subtract two squares?
○ pixels(a..b,c..d) - pixels(a-1..b-1,c..d)

 = pixels(b,c..d) - pixels(a-1,c..d)

● How about four squares?
○ pixels(a..b,c..d) - pixels(a-1..b-1,c..d)

 - pixels(a..b,c-1..b-1)

 + pixels(a-1..b-1,c-1..d-1)

 = pixel(b,d) - pixel(a-1,d) - pixel(b,c-1) + pixel(a-1,c-1)

● We know that all pixels outside the boundaries are completely
black, so let’s work in from the edges restoring cells.

● Complexity: O(RC)

M - Milestones
30 correct • solved at: 00:57 by

DoCThors (Imperial College London)

Author: Robin

Overview
● Given

○ 1 list A of observations of an event
at one time scale factor

○ 1 list B of when all events
happened at another time scale
factor

● Find all of the scale factors that could
plausibly be applied to B to get a
substring that equals A.

● Example:
○ 1,2,3
○ 3,4,5,7,9

■ 3,4,5 = 1,2,3 × 1 + 2
■ 5,7,9 = 1,2,3 × 2 + 1

Milestone Counter - Solution
Techniques

● String matching
● Fractions

Algorithm

● Let’s look at a base case: checking N times against N distances.
○ We can work out the speed from (d1 - d0) ÷ (t1 - t0)
○ Now we need to compare the speed for every pair:

(d1 - d0) ÷ (t1 - t0) = (dx+1 - dx) ÷ (tx+1 - tx)
or
(tx+1 - tx) ÷ (tx - tx-1) = (dx+1 - dx) ÷ (dx - dx-1)

○ What’s important is the ratio between current distance and
previous distance.

● The strings of M and N symbols are equivalent to strings of M-2
and N-2 fractions which should have exact matches.

● From here it’s regular string comparison
○ Knuth Morris Pratt / Boyer Moore / Rabin Karp
○ Or since N is so small, brute force works too.

Questions?
Or comments?

http://ukiepc-2015.bath.ac.uk/
Final Standings

http://ukiepc-2015.bath.ac.uk/

